148 research outputs found

    A Groupwise Multilinear Correspondence Optimization for 3D Faces

    Get PDF
    The official version of this article is available on the IEEE websiteInternational audienceMultilinear face models are widely used to model the space of human faces with expressions. For databases of 3D human faces of different identities performing multiple expressions, these statistical shape models decouple identity and expression variations. To compute a high-quality multilinear face model, the quality of the registration of the database of 3D face scans used for training is essential. Meanwhile, a multilinear face model can be used as an effective prior to register 3D face scans, which are typically noisy and incomplete. Inspired by the minimum description length approach, we propose the first method to jointly optimize a multilinear model and the registration of the 3D scans used for training. Given an initial registration, our approach fully automatically improves the registration by optimizing an objective function that measures the compactness of the multilinear model, resulting in a sparse model. We choose a continuous representation for each face shape that allows to use a quasi-Newton method in parameter space for optimization. We show that our approach is computationally significantly more efficient and leads to correspondences of higher quality than existing methods based on linear statistical models. This allows us to evaluate our approach on large standard 3D face databases and in the presence of noisy initializations

    Morphing of Triangular Meshes in Shape Space

    Get PDF
    We present a novel approach to morph between two isometric poses of the same non-rigid object given as triangular meshes. We model the morphs as linear interpolations in a suitable shape space S\mathcal{S}. For triangulated 3D polygons, we prove that interpolating linearly in this shape space corresponds to the most isometric morph in R3\mathbb{R}^3. We then extend this shape space to arbitrary triangulations in 3D using a heuristic approach and show the practical use of the approach using experiments. Furthermore, we discuss a modified shape space that is useful for isometric skeleton morphing. All of the newly presented approaches solve the morphing problem without the need to solve a minimization problem.Comment: Improved experimental result

    Finite Element Based Tracking of Deforming Surfaces

    Full text link
    We present an approach to robustly track the geometry of an object that deforms over time from a set of input point clouds captured from a single viewpoint. The deformations we consider are caused by applying forces to known locations on the object's surface. Our method combines the use of prior information on the geometry of the object modeled by a smooth template and the use of a linear finite element method to predict the deformation. This allows the accurate reconstruction of both the observed and the unobserved sides of the object. We present tracking results for noisy low-quality point clouds acquired by either a stereo camera or a depth camera, and simulations with point clouds corrupted by different error terms. We show that our method is also applicable to large non-linear deformations.Comment: additional experiment

    Analysis of Farthest Point Sampling for Approximating Geodesics in a Graph

    Get PDF
    A standard way to approximate the distance between any two vertices pp and qq on a mesh is to compute, in the associated graph, a shortest path from pp to qq that goes through one of kk sources, which are well-chosen vertices. Precomputing the distance between each of the kk sources to all vertices of the graph yields an efficient computation of approximate distances between any two vertices. One standard method for choosing kk sources, which has been used extensively and successfully for isometry-invariant surface processing, is the so-called Farthest Point Sampling (FPS), which starts with a random vertex as the first source, and iteratively selects the farthest vertex from the already selected sources. In this paper, we analyze the stretch factor FFPS\mathcal{F}_{FPS} of approximate geodesics computed using FPS, which is the maximum, over all pairs of distinct vertices, of their approximated distance over their geodesic distance in the graph. We show that FFPS\mathcal{F}_{FPS} can be bounded in terms of the minimal value F\mathcal{F}^* of the stretch factor obtained using an optimal placement of kk sources as FFPS2re2F+2re2+8re+1\mathcal{F}_{FPS}\leq 2 r_e^2 \mathcal{F}^*+ 2 r_e^2 + 8 r_e + 1, where rer_e is the ratio of the lengths of the longest and the shortest edges of the graph. This provides some evidence explaining why farthest point sampling has been used successfully for isometry-invariant shape processing. Furthermore, we show that it is NP-complete to find kk sources that minimize the stretch factor.Comment: 13 pages, 4 figure

    A Decoupled 3D Facial Shape Model by Adversarial Training

    Get PDF
    Data-driven generative 3D face models are used to compactly encode facial shape data into meaningful parametric representations. A desirable property of these models is their ability to effectively decouple natural sources of variation, in particular identity and expression. While factorized representations have been proposed for that purpose, they are still limited in the variability they can capture and may present modeling artifacts when applied to tasks such as expression transfer. In this work, we explore a new direction with Generative Adversarial Networks and show that they contribute to better face modeling performances, especially in decoupling natural factors, while also achieving more diverse samples. To train the model we introduce a novel architecture that combines a 3D generator with a 2D discriminator that leverages conventional CNNs, where the two components are bridged by a geometry mapping layer. We further present a training scheme, based on auxiliary classifiers, to explicitly disentangle identity and expression attributes. Through quantitative and qualitative results on standard face datasets, we illustrate the benefits of our model and demonstrate that it outperforms competing state of the art methods in terms of decoupling and diversity.Comment: camera-ready version for ICCV'1

    Estimation of Human Body Shape and Posture Under Clothing

    Full text link
    Estimating the body shape and posture of a dressed human subject in motion represented as a sequence of (possibly incomplete) 3D meshes is important for virtual change rooms and security. To solve this problem, statistical shape spaces encoding human body shape and posture variations are commonly used to constrain the search space for the shape estimate. In this work, we propose a novel method that uses a posture-invariant shape space to model body shape variation combined with a skeleton-based deformation to model posture variation. Our method can estimate the body shape and posture of both static scans and motion sequences of dressed human body scans. In case of motion sequences, our method takes advantage of motion cues to solve for a single body shape estimate along with a sequence of posture estimates. We apply our approach to both static scans and motion sequences and demonstrate that using our method, higher fitting accuracy is achieved than when using a variant of the popular SCAPE model as statistical model.Comment: 23 pages, 11 figure

    The Complexity of Order Type Isomorphism

    Full text link
    The order type of a point set in RdR^d maps each (d+1)(d{+}1)-tuple of points to its orientation (e.g., clockwise or counterclockwise in R2R^2). Two point sets XX and YY have the same order type if there exists a mapping ff from XX to YY for which every (d+1)(d{+}1)-tuple (a1,a2,,ad+1)(a_1,a_2,\ldots,a_{d+1}) of XX and the corresponding tuple (f(a1),f(a2),,f(ad+1))(f(a_1),f(a_2),\ldots,f(a_{d+1})) in YY have the same orientation. In this paper we investigate the complexity of determining whether two point sets have the same order type. We provide an O(nd)O(n^d) algorithm for this task, thereby improving upon the O(n3d/2)O(n^{\lfloor{3d/2}\rfloor}) algorithm of Goodman and Pollack (1983). The algorithm uses only order type queries and also works for abstract order types (or acyclic oriented matroids). Our algorithm is optimal, both in the abstract setting and for realizable points sets if the algorithm only uses order type queries.Comment: Preliminary version of paper to appear at ACM-SIAM Symposium on Discrete Algorithms (SODA14

    A Low-Dimensional Representation for Robust Partial Isometric Correspondences Computation

    Full text link
    Intrinsic isometric shape matching has become the standard approach for pose invariant correspondence estimation among deformable shapes. Most existing approaches assume global consistency, i.e., the metric structure of the whole manifold must not change significantly. While global isometric matching is well understood, only a few heuristic solutions are known for partial matching. Partial matching is particularly important for robustness to topological noise (incomplete data and contacts), which is a common problem in real-world 3D scanner data. In this paper, we introduce a new approach to partial, intrinsic isometric matching. Our method is based on the observation that isometries are fully determined by purely local information: a map of a single point and its tangent space fixes an isometry for both global and the partial maps. From this idea, we develop a new representation for partial isometric maps based on equivalence classes of correspondences between pairs of points and their tangent spaces. From this, we derive a local propagation algorithm that find such mappings efficiently. In contrast to previous heuristics based on RANSAC or expectation maximization, our method is based on a simple and sound theoretical model and fully deterministic. We apply our approach to register partial point clouds and compare it to the state-of-the-art methods, where we obtain significant improvements over global methods for real-world data and stronger guarantees than previous heuristic partial matching algorithms.Comment: 17 pages, 12 figure

    Reconfiguration of 3D Crystalline Robots Using O(log n) Parallel Moves

    Full text link
    We consider the theoretical model of Crystalline robots, which have been introduced and prototyped by the robotics community. These robots consist of independently manipulable unit-square atoms that can extend/contract arms on each side and attach/detach from neighbors. These operations suffice to reconfigure between any two given (connected) shapes. The worst-case number of sequential moves required to transform one connected configuration to another is known to be Theta(n). However, in principle, atoms can all move simultaneously. We develop a parallel algorithm for reconfiguration that runs in only O(log n) parallel steps, although the total number of operations increases slightly to Theta(nlogn). The result is the first (theoretically) almost-instantaneous universally reconfigurable robot built from simple units.Comment: 21 pages, 10 figure
    corecore